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Among all inequalities between the structure factors related by  a given restriction on the indices, 
the fundamental  set is defined as a set of independent inequalities from which all others can be 
derived. The present paper deals with the problem of finding this set for the structure factors 
UH, UH,, U2H, U2H', UH--H" and UH+H' for a centrosymmetric structure. Starting from a more 
restricted problem, viz. to establish relations between some known inequalities, a new inequality 
is found: 

(UI~+H" ~- UH-H"-2UBUtt') ~ ~_~ (1 -~ USH--2U~I ) (1 + U2H,- 2 U2H,). 

I t  is shown that  various known inequalities containing the same U's can be derived from this 
relation combined with three different versions of Harker & Kasper's inequality (UB~: UH,) z _~ 
(14- UH+~,) (14- UH-R'). 

The general problem is solved by calculating the extreme values of UH+~. for arbi trary varia- 
tions of a positive charge distribution in the unit  cell, provided the other five U's remain constant. 
The above four inequalities are found anew, so these constitute the fundamental  set. 

A convenient graphical representation is obtained by plotting the extreme values of UH+H" as a 
function of Un-H, for given values of the other U's. Finally Karle & Hauptman ' s  inequality 
(UH~H,--UHUH,) 2 < (1--U~)(1--U~,) is discussed, and is found to be the analogue of the new 
inequality for the asymmetric case. 

1. I n t r o d u c t i o n  

Since Harker  & Kasper  (1948) derived the first  in- 
equalit ies between structure factors, m a n y  new in- 
equalit ies have  been found. The divers i ty  of these 
relations leads to the  following questions: 

Let  us consider inequal i ty  relations, based on the  
positiveness 0I the electron density, between structure 
factors belonging to a given set. 

(A) Can all  possible relations of this  k ind  be enu- 
mera ted  in an explicit  way  ? This question will be 
t reated in a for thcoming paper, using Kar le  & Haupt-  
man ' s  (1950) method  of generat ing inequali t ies  (of. 
also § 5). 

(B) Are the explici t ly known inequali t ies indepen- 
dent  of each other ? If  one of them can be derived from 
another,  clearly this  one can be discarded. 

(C) Can a set of independent  inequali t ies be found 

from which all others can be derived ? This set will 
obviously be of considerable importance,  so we shall  
call i t  the  fundamental set of inequal i t ies  for the  given 
structure factors. This set may ,  of course, be s ta ted 
in algebraical ly different  forms. The l imi ts  which i t  
imposes on U-values are, however, unique (cf. also 
§ 4), so the above defini t ion is essential ly unambiguous.  

Gris0n (1951) has given an answer to question (P), 
and his answer, though erroneous in itself, will lead 
us to a new way  of tackl ing this  problem. An approach 
to (C) has led to the development  of a theory  which 
confirms and  strengthens the results which have  been 
derived in answering (B). 

We consider un i t a ry  structure factors, UH, defined 
by  

UB =.,~, ni exp 2gi(hxi+kyi+lzi) =.,~, n i exp 2rd(h, r i ) ,  
i i 

where ni is the atomic number  of the i th  atom, divided 
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by the sum of the atomic numbers in the cell, so that  

~ , n ~ =  1,  
i 

and xi, yi, zi are its parameters. We now confine our- 
selves to centrosymmetrical structures and to rela- 
tions between U~, Urn, U ~ ,  U~, ,  U~+m and U~_~,, 
because only these structure factors occur in the in- 
equalities which have been used and/or discussed by 
previous authors" 

e~ - I + ½ U ~ + ½ U ~ , +  U~+H,+ U~_H, 
- (U~+U~,)  2 > 0,  (1) 

e~ -- 1-}-½U2H~-½U2H,-- UH+H,-- UH_ H, 
- ( U ~ -  U~,) 2 > 0 ,  (2) 

ea -- 1 + U~+~,+ U~_~,+ U~+~,U~_~, 
- ( U ~ + U ~ , )  2 > 0,  (3) 

ea - 1 - U~+~,- U~-H,+ U~+H,U~_~, 
- ( U ~ - U m )  2 > 0 ,  (4) 

e5 -= 1 + U2~+ U2~,+ U2~U~s, 
-(U~+~,+U~_~,) 2 > 0,  (5) 

e~ - 1 - U2~- U2H, + U ~  U2~, 
- (U~+ m -  U~_~,) ~" >11 0 ,  (6) 

e , -  ( 1 -U~) (1 -UCm)- (U~+ . , -UHUH. )  2 > 0 ,  (7) 

ss--  ( 1 - U ~ )  ( 1 - U ~ , ) - ( U . _ . , - U . U . , )  2 > O . (8) 

The first six expressions have been found by Harker 
& Kasper (1948), the last two by Karle & Hauptman 
(1950). We may add 

G~ - 1 + U2~-2U~ > O, 

the first inequality found by Harker & I~asper. We 
have omitted the linear inequalities of Okaya & 
Nit ta  (1952), as these are less powerful than (3) and (4) 
(Sakurai, 1952).* 

G~ - Uz+~, + U~_H,-- 2 U~ U~, 
= ~ n~- [cos 2~ (h+h ' ,  r~)+cos 2 ~ ( h - h ' ,  r~)] 

- 2 ~ n i  cos 2n(h, r i ) .~ ,n i  cos 2n(h',  r~). 
i J 

2. A n e w  i n e q u a l i t y  

In establishing the connexion between some in- 
equalities, Grison uses the relation 

U~+~,+ U~_~,-2U~U~, > O, 

which is derived by subtracting two inequalities. This 
is not permissible; the result, however, might be true, 
so the first thing to do is to investigate 

* Note added in proof, 22 February 1954 . - -Our  a t t e n t i o n  
has  been  d r a w n  to  t he  re la t ion  

(1 ± U~)3/2 =< 2.38 (½ ± ~ U~ + ~ U:~) 

der ived  b y  Gillis (1948). The  ensu ing  lower l imi t  of U2// 
lies above  the  one g iven  by  Gtt ~_ O. The  la t t e r  b o u n d a r y  
va lue  can,  however ,  be  real ized (namely  by  t a k i n g  
cos 2gH.r i - - - -  UH for all j ) .  I n  th is  case Gillis's inequa l i ty  
is v io la ted .  Gillis's error  is caused  by  t he  use of only  thre~ 
t e rms  of a series d e v e l o p m e n t  of [cos a ul in his der iva t ion .  

This may be written, using Z'ni = 1, as 

6[, = 2Z,  ninj cos 2g(h, rj) cos 2~(h' ,  r~) 
4, 

- 2 2 ,  ninj cos 2g(h, r~) cos 2~(h',  ri) 
i, j 

=.~. ninj [cos 2z(h,  r j ) - c o s  2~(h, ri)] 

× [cos 2z(h ' ,  r j ) - cos  2g(h' ,  ri)] - 

The identity between these two expressions may be 
proved by commuting i and j in the first expressior~ 
for G~. Now from the second expression it is seen at~ 
once tha t  G 1 may be positive or negative, so the alleged 
inequality used by Grison is not valid. This second 
expression, however, invites us to apply the inequality 
of Cauchy. If we put  

ap ---- ~ / (n in j ) .  [ cos  2z(h, r~)-cos 2g(h, r i ) ]  , 

bp = ~(ninj). [cos 2g(h',  r j ) - cos  2g(h',  r~)], 

then, from 
< Zai.r i, 

we have 

(UH+H' + U~_~,-  2 U~UH,) ~ 
< (I+U~.--2U~H).(I+U2H,--2U~,). (9) 

We shall prove later tha t  this inequality is ra ther  
powerful; at present we only draw attention to the 
right side, which contains two non-negative factors. 
We denote them as before by G H and G H, and further 
introduce G~ = U~H+ U~H,-- 2 UH+~,U~_~, . 

3. R e l a t i o n s  b e t w e e n  the  i n e q u a l i t i e s  

The expressions G t and G~ are obtained by subtracting 
inequalities. Accordingly we will t ry to express our 
inequalities in Gn, GH,, G1 and G a. Then it is easily 
verified tha t  

o r  

e~ = ½GH+½GB,+G~ ~ O, (la) 
~2 = ½GR+½GR'-G1 ~ O, (2a) 
e3  = ½G.+½GH.-½G~+G~ > O, (3a) 
e 4 = ½GH+½GH,-½G2-G1 >/O, (4a} 
e7 -- ½GH+½GH'-UH+H'G1--½G2 >/ O, (7a) 
e s = ½G.+½G.,-UH_.,GI-½G2 >~ O, (8a} 
e9 -- G~GH,-G~ >~ 0;  (9a} 

IGl] < ½G~+½GH'-½G~, 

lall < 1/(Ggg~'). 

(1,2b} 
(3,4b} 
(7,8b) 

(9b) 

As 2]~/(ab)[ < [a]+]b I, it is seen at once tha t  (9b) 
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implies (1, 2). From (3) and (4), (7) and (8) may be 
derived: 

IUB±H'[ < 1,  
SO 

[u.~=..G~I < ½a,+½aH.-½a.. 

Then a fortiori (7, 8b) is true. 
We have omitted (5) and (6). We find, however, 

~ = ( a . a . . - ~ ) + 2 ( u . / a . . - u . . v ~ . ) "  , 
+ 4 u .  u . .  {V(a.a.,)-a~} 

= ( a , a , . - ~ ) + 2 ( v ,  Va, .+u, .v~, )  ~. 
-4u .u . . {V(a .a . , )+a~}  

by writing 
I+U~H = G~+2U~, etc. 

Hence inequality (5) follows from (9); for if the sign 
of / JR U~, is positive, the relation is proved with the 
help of the first expression of e~, in the other case with 
the second one. 

The inequality (6) has a somewhat lonely position 
between the others (cf. §§ 4 and 5). We may mention 
here that  (7) and (8) may also be derived from (6) 
and (9): 

If 
A = V(1- u ~ ) .  V(1- u~.)  

+ V(1 +u~.-2u~).V(1 + u~.,-2u~,),  

then, from the inequality of Cauchy, 

A < ~V{(1-~)(1-u~.)} 

and, from (6) and (9), 

A >~ IUH+H,--UH_H,[+]U~+~,+U~_~,--2UHU~,] 
> 2 1 v . + . . - v . v . , l .  

By eliminating A the inequalities of Karle & Haupt- 
man are found again. 

Our results are schematically represented by 

(9) (6) (3) (4) 

(1), (2), (5) ~ (7), (8) 

No relations exist between (9), (6), (3) and (4). 
This is easily seen for the last two. As G~ is the same 
as G~ for a different choice of H and H' ,  its sign may be 
positive or negative; therefore no relation exists 
between (1), (2) and (3), (4), and it does not seem 
probable that  (3) and (4) could be derived from (9) 
or (6). This does not concern us here, as the next 
sections will show the exact relation between these 
four. 

4. T h e  e x t r e m u m  a p p r o a c h  

Inequalities have, so far, been obtained by showing 
that  certain combinations of U-values cannot occur. 
Conversely, one may try to determine which combina- 
tions can occur. This amounts to an investigation of the 
extreme values which one structure factor (say UH+H,) 

can assume when a distribution of positive charges in 
the unit cell is varied in such a way that  certain others 
(in our case UB, U~,, U2H, U2H, and UH_R, ) remain 
constant. If we express the maximum value thus 
found, UH+H', as a function of the other U's, then 
for every structure the inequality 

obtains, and similarly for the minimum value. 
Since these inequalities determine all possible com- 

binations of the six U's, any other inequality con- 
taining the same U's must be derivable from the 
previous ones; so they form the fundamental set 
defined in § 1. 

We will show that  the extremum values can be 
realized, so the fundamental set defines all possible 
values of UH+~,. An advantage of this method is 
that  it gives the results in a logical order: if we drop 
a restriction, the ensuing inequality (though a fun- 
damental one for the reduced set of U's) can never 
be more stringent than the general one. 

The solution of the variation problem for UH+H, 
is as follows: Lagrange's method for calculating 
conditional extremes is applied to a charge distribu- 
tion of a given number of atoms. We ascribe to the 
ith atom the charge fraction ni and the coordinates 
ri. Introducing xi = cos 2~h. r i and y~ = cos 2~h' .  ri, 
we wish to derive the extreme values of 

V,+ H, =- Xn,[xiy~-V((1-x~)(1-~)}]  

with the conditions 

u . _ . .  = ~,~,[x,y,+ V{(1-x~)(1-~)}] ,  
UH = Xnixi, U,,  = Zniy~, 
VH =- ½(1+ U~H) = Xnix~, VH, = Xn~y~, 1 = Xn~. 

The condition ni > 0 need not be introduced at 
once, because it can at most rule out certain solutions 
of the variation problem without changing the re- 
maining ones. Both the ni's and the summations 
apply to the asymmetric unit only, since the centre- 
symmetric character is already expressed in the for- 
mulas. Adding the six expressions to UH+B,, mul- 
tiplied by the Lagrange coefficients 0, u, 2, ½/t, ½u, ~, 
we restate the problem by deriving the extreme values 
of 

= Xn,[(1 ÷e)x,y,+(e-1)]/{(1-x~)(1-y~)} 

Putting the derivatives of ~ with regard to xi, Yi and 
n i equal to zero, we get three sets of equations. We 
shall denote I/{(1-y~)/(1-x~)) by t,; then the sets are 

(l+e)y~+ (1-e)xit~+lax~+z = O, (A) 
(1 ÷0)xi÷ (1 -~)ydt~÷ ~,y~+). = O, (B) 
(1 +~)x~y,+ (~-  l ) [/{(1-x~) (1-y~)}+½lU ~ 

+½~+.x~+2y~+v  = 0.  (~) 

From these equations and the six conditional equations 
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the extreme values can be calculated. The character of 
the extreme values can be ascertained with the help of 
the total  differential of ~ for the extreme value. Using 
(A), (B) and (C), we find 

A~cf = ½Xn~{(Ax~)2[(1-o) tJ (1-x~)+/u]  

+ (Aye)2 [(1 - o)/t~ (1 - y ~ ) +  ~] + 2(Axe)(Aye) 
x [ ( l+e ) - (1 -e )x~ydV{(1-x~) (1 -y~)} ]} .  (D) 

If the extremum is a maximum, this differential must  
be negative for all values of (Axi) and (Ay{) allowed 
by  the conditions. 

We choose from all equations (A), (B), (C) those 
pertaining to two arbi t rary atoms, say 1 and 2. Elimi- 
nating u, ~t, if, v and ~ from these six equations, we 
find 

( 1 - e ) ( t ~ - t ~ ) [ 1 - x ~ x ~ - ( 1 - y ~ y ~ ) / t ~ t ~  ] = O. (E) 

This equation can be satisfied by  

or by 

or by 

1 - e  = 0 ,  (E,) 

t~-t~ = O, (E2) 

1 - x l x  2 -  (1 -yxy2)/txt9 = O. (E3) 

Now it is readily seen tha t  if for atoms 1 and 2 we 
assume t x = t 2, the same relation (E2) must obtain 
for the other atoms; for x x, Yx, x2, y~ may  be elimi- 
nated from (A), (B) and (E~), and from this a relation 
between the Lagrange coefficients can be found. The 
equation (E3) would give another relation, and (El) is 
the relation ~ = 1. If two relations existed between 
the Lagrange coefficients, it  would not be possible to 
calculate the coefficients from the arbitrari ly given 
structure factors. Our problem has three separate 
solutions, which we have to consider separately. We 
shall from now assume tha t  the number of atoms is 
at  least three. 

(E1)--The equations (A) and (B) must be valid for 
all atoms, so they  must  be identical. This gives two 
connections between the Lagrange coefficients. We find 
the solution by  multiplying the equations (A) by 
ni, nixi  and niyi, and summing. These equations can 
be expressed with the given structure factors; we find: 

A 

The extreme value UB+R' is given by 

G~ -- (UH+. ,÷UH_H, - -2U.UH, )  ~ = ( I + U 2 H - 2 U ~ )  ' 
x (]. + U ~ . , - 2 U ~ , )  - G~G~, .  

The atomic parameters obey the relation 

( x - U . ) / V G  . = ± ( y - V . , ) ~ / G ~ ,  

= 41ff = ~=2VG.IVG.,. 
Now (D) may  be calculated and takes the form 

A2q~ = - Z n ~ [ A z d / ( - f f  ) - A y J ] / ( - # ) ]  ~ . 

To the upper sign in t h e  equation for the atomic 

parameters corresponds G x = +]/(GHffIB,), then Ag~ 

is never positive; this value is a maximum. To the 
lower sign corresponds a minimum. So 

This is the inequality (9). We must  remark tha t  this 
result holds only if all ni have the same sign, in our 
case positive or zero. If some n's were negative, the  
extreme value would be neither a maximum, nor a 
minimum. 

(E~)--This relation leads to 

1 / ( 1 - y 2 ) l l / ( 1 - x  ~) = C .  

By the same device as used in the first case, we find 

c = + V ( 1 - u 2 . ) I V ( 1 - u ~ . , ) .  

and from the same equation we find the extreme values 

U . _ . , - U . + . ,  = + ~ / { ( 1 - U 2 . ) ( 1 - U 2 . , ) ) ,  

the positive sign belonging to the positive sign of C. 
If we now express y by x and insert this expression 
in the equations (A) and (B), we get two quadratic 
equations for x, and, as there are more than two atomic 
parameters, these equations must be identically satis- 
fied. This gives the values ~ = - 1 ,  ff = - 2 C ,  v = 
- 2 / C  and enables us to write down the total  differen- 
tial (D). The result is tha t  Un+B, is a minimum, if 
the positive sign of C obtains and if all n 's are non- 
negative. To the negative sign of C belongs the 
maximum. From this the inequality (6) is found. 

(Ea)--This case is t reated in the same way as (E2). 
The equation can be writ ten 

(1-zxz4 2 ( l -z~)(1-xb 
(1-yly2) 2 ( 1 -yD  (1-y~) " 

By subtracting the denominators and the numerators 
and equalling the new fraction to the first, we find 
tha t  either ( 1 - x y ) / ( y - x )  or ( l + x y ) / ( y + x )  must be 
a constant. 

The first expression may  be written 

( 1 - x y ) / ( y - x )  = ½(M+ I / M )  . 

Solving for M and summing the result over all 
values of xi, Yi after having multiplied with n i, the 
extremum is found to be 

A 

( 1  - UH+B') (1 -- U~_H,) = ( U ~ , -  UH) ~ , 

~- M = ( 1 - U R _ ~ , ) / ( U ~ , - U ~ ) .  

As (A) and (B) must  be identically satisfied, it is 
possible to evaluate the coefficients" 

i f =  ~ = 0 ,  and Q = M  ~. 

Then it  can be shown from equation (D) tha t  UB+H' 
is a maximum (non-negative ni). 

In  the same way the second expression gives a 
minimum, defined by 

(1÷ UR+H.)(1 +UH-H,) = (UH,+UB) u . 
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So far we have obtained as possible extreme values 
of UB+H, three expressions for the maximum and 
three for the minimum, which, taken together, are 
exactly identical with the inequalities (9), (6), (4) and 
(3). A further examination of these extreme values 
will be given in § 5. The fact that  no additional ex- 
pressions are obtained is, however, sufficient to prove 
that  this set is the fundamental one. 

I t  does not seem likely that  the 'extremum' method 
would lead to a simple generalization for arbitrary sets 
of structure factors. Presumably certain sets are to be 
preferred because they lead to essentially new in- 
equalities; the set which we have chosen in a heuristic 
way seems to be one of these. 

We have succeeded in establishing a relation be- 
tween the above results and those of Karle & Haupt- 
man's method (1950) by choosing the indices in their 
determinant IFBp-Hql as follows: 

//1=0; H~ = H ;  I t 8 = - H ;  H 4 = H '  ; H 5  = - I t '  , 

and applying an orthogonal transformation. The 
stril~ing correspondence between the two results sug- 
gests that  a systematic derivation of fundamental sets 
will eventually be possible by introducing this notion 
in Karle & Hauptman's  method of generating in- 
equalities. 

5. A graphical  representation 

The mutual relations between the extreme values of 
UH+B, may be understood from an inspection of the 
(UH+H,, US-H,) plane. Sakurai (1952) has shown that  
the relation (3) may be represented b y  a hyperbola 
in this plane. The admissible points are situated above 
this hyperbola. In the same way (4) may be represented 
by another hyperbola, and (6) and (9) by two pairs 
of parallel lines, corresponding to the maximum and 
minimum values. We have added the relations (7) 
and (8), defining a square, and also (1) and (2). If we 
choose a value of UB-H, in this plane, then the inter- 
sections with the curves belonging to the fundamental 
set denote the six possible extreme values. Now we 
will prove that  only the lowest maximum and the 
highest minimum satisfy the condition n~ > 0. For, if 
a higher maximum could be attained, then by shifting 
the atomic parameters and keeping the n's constant, 
we must exceed the value belonging to the lowest 
maximum. But this value will now not be a maximum, 
uo the atomic parameters cannot lie on the correspond. 
ing curve. This is impossible, because we can show 
that  not only are the inequalities obtained from the 
curves derived in § 4, but conversely the extreme 
values can only be obtained under the conditions of 
this curve, provided that  the n's are non-negative. 
We will prove this for the inequality (9),; the Other 
inequalities may be treated in the same way. 

From § 2 it is seen that, putting : 

ap = [/(n~ny). (xy-xi) ,  bp = )/(niny). ( y j - y ( ) ,  

the relation G~ = GBGH, may be written 

2 2 X a p ~ b p - ( Z a p b p )  9 = O. 

This is a determinant and may be written 

l apaq 2 

bpbq -- O. .io, q 

Now if some n's are positive, some negative, some 
squares of these determinants may be negative. But if 
all density fractions have the same sign (without loss 
of generality we may put a positive sign) all the de te r -  
minants will be real, their squares cannot be negative, 
and so, from the relation mentioned above, they must  
be zero. This condition can be written 

ap/bp = C ,  
or  

xy-x~ = C(y j - y~ ) .  

If we multiply this relation by n~, then by summing 
the equation is reduced to 

xy-- UH = C(yy-- UR,) • 

Multiplying by nyx i and summing leads to 

v = a . / G 1  = ± V G . / V a . . ,  

the same relations as obtained in § 4. 
The higher maxima could only be realized by mixed 

signs of n, and then they would not be real maxima 
at all, as may be seen from § 4. So, only the heavy 
lines in the diagram represent real extremes. They 
can be reached by putting the atomic parameters on 
the corresponding curves in the x, y plane. The net 
result is, therefore, that  each point of the space 

+1 

(8) 

\ 
\ 

(7) 

\\ 

(7) 

(8) 

÷1 

Fig. 1. Ext reme values of UH+ H, 8~s a function of UH-tt" for 
UH ---- 0"70, UH, ---- 0.20, U2H ---- 0.29, U2H, -~- 0.32, accord. 
ing ¢o various inequalities. The fundamenta l  set (3), (4), 
(6) and (9) delimits the area of all possible combinations 
of UH+H" and UH-H" (shaded region). 
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between the heavy lines corresponds to a possible 
combination of UH+W and U~_H,. 

The square, defined by  (7) and (8), the inequalities 
of Karle & Hauptman,  and the set of lines defined by 
(1) and (2) include the allowed region entirely. The 
corners of the square coincide with the intersections 
of the hyperbolas. This is to be seen immediately from 
(7a) and (8a), (3a) and (4a). For these points G 1 = 0. 
So these inequalities do not belong to the fundamental  
set. The inequali ty of Karle & Hauptman,  however, 
is important  for asymmetric structures, as will be 
shown in the next section. 

6. A s y m m e t r i c  s t r u c t u r e s  

If we consider 

g+ = U~+H,- UR UR,, 

we find tha t  it  may  be written 

g+ = ½.~Y, nin i [exp 2~i(h, r j ) - e x p  2zi(h, ri)] 
4, j 

× [exp 2gi(h ' ,  r i ) - e x p  2~i(h ' ,  ri)] • 

If we apply the inequali ty of Cauchy in the same way 
as we did in the proof of (9), we find 

the relation of Karle & Hauptman.  If we write 

gl = 1 --]U HI 2, g2 ~-- 1 - I V  H,] 2 

then (10) may  be written 

Ig+] < V(glg2). (lOa) 

The same relation obtains for g_, which is g+ after 
replacing H '  by  - H ' .  

The relation (10) plays the same part  here as does 
the new inequality (9) for centrosymmetrical  struc- 
tures. We mention without proof, tha t  the inequalities 
of Harker  & Kasper, valid for asymmetric structures, 
namely 

[UH±UR,[ ~ ~ 2 ( l + R e  UB_~,), 

can be derived from (10). Hence the lat ter  implies all 
known inequalities for asymmetric structures. Com- 
bined with its transcription for U_H,, it  constitutes 
the fundamental  set for UH, UH,, UH+w and UH-H,. 

For centrosymmetric structures, however, applica- 
tion of these inequalities leads to the rather poor results 
(7, 8) in comparison with (3) and (4), which form the 
fundamental  set in this special case (cf. Fig. 1). 
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Experiments have been carried out to investigate the cause of the relative radial displacements of 
adjacent diffraction spots on some X-ray microbeam back-reflexion photographs of rolled poly- 
crystalline aluminium. Among other causes, it is possible that  the displacements are due 
to the existence, within the material, of particles in which the lattice spacing is different from the 
average value. From the present experiments it is concluded that a few reflexions from such particles 
have been found. The stresses required to produce strains of the observed magnitude are of the 
order of the yield stress of the material. 

1. I n t r o d u c t i o n  

I t  is possible to resolve the continuous Debye-Scherrer 
rings on normal X-ray back-reflexion photographs of 
deformed polycrystalline aluminium into discrete re- 
flexions by the use of the X-ray mierobeam technique 
(Kellar, Hirsch & Thorp, 1950). A feature of the micro- 
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beam photographs is tha t  not all the reflexions of given 
indices lie on a ring of definite radius: adjacent re- 
flexions are often displaced radially from one another, 
and variations in the magnitude of the displacements 
from point to point give an appearance of waviness 
around the ring. The effect is very often most marked 
on photographs of lightly deformed specimens taken 
with relatively large beam diameters (~  100 Fe) (see 
Hirsch & Kellar, 1952). When smaller X-ray beam 


